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DUST-ACOUSTIC WAVES IN DUSTY PLASMAS
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Abstract—New acoustic waves originating from a balance of dust particle inertia and plasma pressure are
investigated. It is shown that these waves can propagate linearly as a normal mode in a dusty plasma, and
non-linearly as supersonic solitons of either positive or negative electrostatic potential.

There has been much interest in plasmas containing
dust particles because of the importance of such
plasmas in the study of the space environment, such
as asteroid zones, planetary rings, cometary tails, as
well as the lower ionosphere of the Earth (Horanyi)
and Mendis, 1985, 1986a, 1986b ; Whipple et al., 1985 ;
Whipple, 1986; de Angeles er al., 1988). Dusty
plasmas usually contain a small amount of dust grains
of micrometre or submicrometre size which are nega-
tively charged because of field emission, ultra-violet
ray irradiation, and plasma currents, etc. (Feuer-

. bacher er al., 1973 ; Fechting er al., 1979 ; Whipple et
al., 1985 ; Havnes et al., 1987).

Most theoretical works on dusty plasmas are con-
cerned with the dynamics of the dust particles, such
as their creation, trajectory, impact and fragmentation
characteristics, etc. rather than their collective inter-
action with the plasma. Collective -effects in micro-
plasmas have been studied by Verheest (1967), and
James and Vermuelen (1968), using many-fluid
models. They consider cold particle fluids, with the
collective effect arising from a distribution of the fluid
velocities. In this manner, they obtain dispersion
relations for collective oscillations in such plasmas.
On the other hand, recently de Angelis er al. (1988)
studied the propagation of ion acoustic waves in a
dusty plasma, in which a spatial inhomogeneity is
created by a distribution of immobile dust particles
(Whipple et al., 1985). They applied their results in
interpreting the low frequency noise enhancement
observed by the Vega and Giotto space probes in the
dusty regions of Halley’s comet.

Physically, the low-frequency behaviour of a dusty
plasma is very similar to that of a plasma consisting
of negative ions (D’Angelo et al., 1966). In fact, for
the case in which the wavelength and the inter-particle
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distance are much larger than the grain size, the dust
grains can be treated as negatively charged point
masses (like negative ions). Here, however, the charge-
to-mass ratio of a dust particle can take on any value.
Thus, with minor corrections, many results from the
theory of negative ion plasmas can be adapted to
dusty plasmas.

In this paper, we study the long-wavelength low-
frequency collective oscillations in a dusty plasma.
We shall consider modes in which the dust particle
dynamics is crucial, rather than modes which are
simply affected by the dust. In particular, we study
the collective motion of the negatively charged dust
particles in a background of hot electrons and ions
in thermodynamic equilibrium. We find that a new
type of sound wave, namely, the dust-acoustic waves,
can appear. These waves are usually of very low
frequency, but in some cases the latter can be com-
parable with that of the ion-acoustic waves. We also
investigate the non-linear characteristics of the dust-
acoustic waves, and show that they can propagate as
solitons with either negative or positive electrostatic
potential. The two types of solitons have quite distinct
speed—amplitude relations.

In realistic dusty plasmas, the charge, size and mass
of the dust grains are usually widely distributed. Fur-
thermore, the charge of the grains can be affected by
the presence of the fluctuating electric field, and the
grains may break up or coalesce. Since the inclusion
of these effects would considerably complicate our
investigation, we shall in the following assume that
the dust grains are of uniform mass and behave like
point charges.

Consider a three-component plasma consisting of
electrons and ions having Boltzmann distributions
with temperatures T, and T, respectively, as well as
negatively charged, heavy dust particles. For one-
dimensional propagation of acoustic-like low-fre-
quency waves in such a plasma, the dynamics of the
dust particles is governed by the fluid equations,
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where n, m, — Ze, and v are, respectively, the number
density, mass, charge, fluid velocity of the dust
particles, and ¢ is the self-consistent ambipolar poten-
tial. Here, x and ¢ are the space and time variables,
and e is the electronic charge. In equation (2) we have
assumed, for simplicity, that the dust particles are
cold. In equation (3), the ion and electron number
densities (n; and n.) are given by the Boltzmann

distribution,
2
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where n,, and n,, are the respective equilibrium num-
ber densities. Quasi-neutrality in equilibrium leads to,

Ny = nd)+zn0, (6)

where n, is the equilibrium number density of the dust
particles. Thus, our problem differs from those of
Verheest (1967) and James and Vermuelen (1968) in
that here the background plasma is hot and in equi-
librium, while the dust fluid is cold.

The dispersion relation of linear low-frequency
waves corresponding to equations (1)-(6) can be
easily obtained by carrying out the usual normal
mode analysis. Accordingly, we assume all the pertur-
bations to be of the form exp [i(kx — )] and obtain
the linear dispersion relation, )
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where B2 = Z(6—1)/(14+18), C, = (T./m)'%, 6 = nio/
N, 1 =T./T,, and Ap, = (T./4nnee®)"’. In order
that w? > 0, we require 6 > 1, which is always satis-
fied in view of the equilibrium condition (6). Clearly,
equation (7) shows that the waves are of acoustic
nature, whose phase velocity w/k in the long wave-
length limit (kg « 1) is BC,. Furthermore, in this
limit, equation (7) becomes,
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which shows that the waves are weakly dispersive for
finite wavelengths.

For finite amplitude waves, the linear approxi-
mation breaks down, whereas the non-linear and dis-
persive effects can become equally important. For
weak non-linearity and dispersion, equations (-5
can be reduced to a more tractable and simpler equa-
tion of the Boussinesq form using a procedure dis-
cussed by Rao (1990). Omitting the details, which are
fairly straightforward, we obtain,
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where ¢ has been normalized with respect to T./e.
Equation (9) is a generalized Boussinesq equation,
having an additional non-linear (9 2$3/0x?) term when
compared with the standard Boussinesq equation
(see, for example, Makhankov, 1974). The third term
represents the dispersive effects. The last term is in
general negligible, except in the case when the
coefficient of the 8%¢?/dx? term turns out to be small.
Equation (9) governs the propagation of acoustic
waves which are weakly non-linear and dispersive.

For uni-directional, “near-sonic” (aw/k = BC)
propagation, equation (9) can be further reduced.
Assuming 8/0t ~ —BC,0/0x, we obtain,
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which is a generalized Korteweg—de Vries (K—dV)
equation with an extra non-linear (p20¢/0x) term
when compared with the usual K-dV equation (Washimi
and Taniuti, 1966). Note that equation (10) can also
be derived using the standard reductive perturbation
analysis with the stretched variables,

{ =e(x—BC.0),

t=¢%t,

(1)

where ¢ is a smallness parameter (Bharuthram and
Shukla, 1986).
Equation (9) or (10) can be exactly solved for
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stationary solutions of the form ¢(x, ) = ¢(£), where
& = x— Mt and M represents the speed of the station-
ary wave structure normalized by C,. In the station-
ary frame, equation (9) becomes,
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In equation (12), we have normalized { and M with
respect to Ap. and BC,, respectively, and used the
boundary conditions appropriate for localized solu-
tions, namely,
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The localized solutions of equation (12) are given by
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where &, is a constant of integration, and
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In order that k is real (so that the non-linear wave is
indeed localized), one requires M? > 1, that is, only
supersonic solutions exist for equation (9). Similar
solutions exist also for the generalized K-dV equation
(10). In equation (15), both the solutions are allowed,
as is discussed below.

The two solutions given by equation (15) represent
localized structures with positive and negative poten-
tials. While a, and a, are always positive, the sign of
a, depends on the magnitudes of 6 and n. However,
for the realistic case 6 = 1 and # » 1, we find,

a, = nd(M?*—1) >0,
2,2
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The coefficients B, then simplify to
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Thus, ¢_(&) < 0 everywhere and has an inverted bell-
shaped structure. We note that the potential-dip solu-
tions are unique to the dust-particle acoustic waves.
This is in contrast to the usual ion-acoustic waves
which propagate non-linearly only as localized poten-
tial-humps.

Unlike the previous case, the ¢, (&) solution has
the usual bell-shaped structure with ¢, (£) > 0 every-
where, similar to that of the usual ion-acoustic wave
solitons.

Finally, we shall discuss the existence of finite
amplitude dust particle acoustic solitons using the full
equations (1)—(5). In the stationary frame { = x— M1,
they can be integrated once to yield the “energy inte-.

gral”
d¢
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where the effective potential ¥ (¢) is given by,
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The existence conditions for localized solutions can
be easily obtained by analysing ¥ (¢). The conditions
are (Chen, 1974)
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where the amplitude ¢, is related to the Mach number
M by,
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Note that in the small, but finite, amplitude limit,
equation (22) exactly reduces for M 2 ~ 1to the gener-
alized Boussinesq equation in the stationary frame,
namely equation (12).

In this paper, we have shown that in dusty plasmas,
dust-acoustic waves can propagate both lincarly and
non-linearly. The phase velocity of the linear waves
is approximately given by (naZT./nom)'"*, where we
recall that n,. Z and m are the number density. charge
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and mass of the dust particles, T, is the electron (here
set equal to the ion) temperature, and n, is the ion
density. Clearly, depending on the concentration,
charge, as well as mass density of the dust grains, the
phase velocity and the corresponding wave frequency
can assume a wide range of values. Non-linearly, the
dust-acoustic waves can propagate as solitons of either
negative or positive electrostatic potential, cor-
responding to a hump or depletion in the electron
density, respectively. The very distinctive relation-
ships between the amplitude and speed of these two
types of solitons may be useful in the eventual identi-
fication of the latter in the laboratory or space.
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