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Chiral lattice fermions with correct vacuum polarization and chiral anomaly
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An action for chiral lattice fermions is proposed, which avoids the Nielsen-Ninomiya theorem by
virtue of its nonlocality and nonbilinearity. The action is constructed by eliminating the extra fer-
mion modes with a gauge-violating Majorana-type Wilson mass, which is then rendered invariant by
an integration over gauge transformations. The free propagator is calculated, and the one-loop vac-
uum polarization is shown to be identical to that for Wilson fermions, even at nonzero lattice spac-
ing. Also the chiral anomaly is shown to be the same as for Wilson fermions in the continuum limit.

INTRODUCTION

Since its introduction, lattice gauge theory' has been
plagued by the lack of a way to include chiral fermion
fields. This is disturbing because we appear to live in a
chiral world, the standard model containing only left-
handed fermions. The problem is summed up by the
theorem of Nielsen and Ninomiya? which says that there
is no action describing a single fermion and satisfying the
conditions of Hermiticity, invariance under lattice
translations, bilinearity, locality, chiral invariance, and at
least global gauge invariance. Although Nielsen and Ni-
nomiya proved their theorem rigorously, there are heuris-
tic arguments leading to the same conclusion.’

According to the no-go theorem, the action must
violate at least one of the conditions, though to date the
only successful actions have either broken chiral symme-
try or allowed more than one fermion. In this paper I
will consider violating locality and bilinearity. The ac-
tion will be constructed by first breaking gauge invari-
ance, then restoring it with an integral over gauge trans-
formations.

Let us first take a brief look at what goes wrong on the
lattice. The problem begins with the action obtained by
naively substituting finite differences for derivatives in the
Dirac action. The naive Euclidean lattice action for a
massless fermion is
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where a is the lattice spacing, ¥, and ¥, are independent
Grassmann fields defined on sites, and the y”’s are Eu-
clidean ¥ matrices satisfying

(Ywy =—8,,. )

The indices n and p indicate lattice sites and directions,
respectively, while n+yu is shorthand for the site dis-
placed one lattice vector from site n in the u direction.
U, is a group element defined on links by

U, ,.=expligad,,) . (3)

Under the gauge group these fields transform as
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where the V,,’s are group elements defined on sites. For a
U(1) gauge group, 4,, is a real number, whereas for
non-Abelian groups 4, , is a matrix. Throughout most of
this paper explicit calculations will be done in quantum
electrodynamics (QED) for simplicity, although, as in Eq.
(4), daggers and transposes will be retained in general ex-
pressions.
The free fermion propagator is

Gy(p)=—a 3 v,sinp,a [ 3 sin’pa ]" , (5)
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which has poles at p,=0 and m/a. Since each com-
ponent of p,, can be 0 or 7/a, there are 16 poles and Sy
describes as many fermions. Having violated none of the
conditions of the Neilsen-Ninomiya theorem, Sy gives a
“doubled” fermion spectrum. However, the situation is
worse than a matter of simple species multiplication.
Suppose one used two-component Weyl spinors in the
hope of getting 16 left-handed fermions. It turns out that
the doubling mechanism produces left- and right-handed
fermions instead. A careful analysis of the effective ¥
for each of the modes shows that half the particles have
one chiral charge, and the others have the opposite
charge.* This means that one cannot choose to assign
chiral fermion charges arbitrarily since the doubling pro-
duces a vectorlike theory in the end.

There are two commonly used fermion actions: the
Kogut-Susskind action® which reduces the multiplication
to a factor of 8 while maintaining a discrete chiral invari-
ance, and the Wilson action! which produces a single fer-
mion, but breaks chiral symmetry. The action I will pro-
pose is very similar to the Wilson action which is ob-
tained by adding to Sy the term
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where r is an arbitrary parameter, and the second line
defines the matrix W, This gives the undesired modes

mn*
momentum-dependent mass proportional to
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(1/a )sinz(pua /2) so that, in the continuum limit, the
spurious modes have an infinite mass and decouple from
the theory. Such a solution is satisfactory for quantum
chromodynamics (QCD) which has equal numbers of left-
and right-handed fields, but there is no hope for
representing weak interactions or the standard model
since the breaking of chiral symmetry in Sy, forces there
to be left- and right-handed fields at all lattice spacings,
including the continuum limit.

NEW ACTION

As was pointed out by Karsten and Smit, the
difficulties with lattice fermions are intimately related to
the chiral anomaly.* In order to have a chiral anomaly,
the quantum theory must be variant under the chiral
transformation

Y—expliays), d—Pexpliays), )

even though the classical action is invariant. In continu-
um perturbation theory this comes about through the tri-
angle graph,® while nonperturbatively the anomaly
reflects the fact that the fermionic measure in the contin-
uum path integral varies under chiral transformations.’
Unfortunately, the lattice measure is manifestly chiral in-
variant. With no means of obtaining an anomaly in the
measure, the lattice path integral will be invariant under
chiral transformations unless the action itself breaks this
symmetry. Wilson fermions succeed in producing the
correct anomaly in this way, breaking chiral invariance in
the action; although the Wilson term formally vanishes in
the continuum limit, a remnant remains which gives the
desired anomaly.*?

It seems inescapable that the action itself must provide
the variation under Eq. (7). However, Wilson fermions
require L-R couplings which we cannot allow in a chiral
gauge theory containing only left-handed fields. A term
is needed which varies under Eq. (7), but only involves
L-L (or R-R) interactions. These requirements force us
to consider a Majorana-type Wilson term

Sc=3 LWL W, ¥, — 0, C'W,,. 87, (8)
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where C is the charge-conjugation matrix, satisfying
c'yIc=—y,, CT=—C, Cys=vsC, and W,,, is defined
by Eq. (6).

Some facts about Eq. (8) are worthy of comment. The
first is that the difference in sign between the two terms in
Sc is no accident. The minus sign on the ¥ term is re-
quired to make the action Hermitian when continued to
Minkowski space. The other notable feature of S, the
factor of 1, is really a matter of convention. After all, »
could be redefined. The 1 is included to make » in Eq. (8)
agree with the common definition of » used with standard
Wilson fermions. Lastly, it should be pointed out that ¢
is not a Majorana spinor, and is not constrained to obey
the Majorana condition. The interactions in S¢ will
nonetheless be referred to as Majorana type.

While S; looks promising, it is unfortunately gauge in-
variant, transforming as
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This may be remedied by integrating the exponentiated
action over all gauge transformations, making the path
integral

Z.= | DYDY —Sy—S¢) .
c f 4 1/’fVeXP( ~N—Sc) (10)
Equivalently, Z~ may be written as

Zc= [ DYDPexp(—Sy)

(11)

Sqg=Sy—In [ Jexp(—Sc) ,
from which it becomes apparent how the Nielsen-
Ninomiya theorem is avoided; the effective action is non-
local and nonlinear. The logarithm cannot undo the ex-
ponential since f , Sets to zero any gauge-invariant terms
in exp(—S¢), and thus S 4 contains products of fields not
possible with a local bilinear action. Using the integra-
tion rather than introducing an auxiliary field emphasizes
the fact that S.4 may simply be written down as a sum of

products of the ¢,’s and U, ,’s.

This construction bears a resemblance to the proposal
to Aoki, Funakubo, and Kashiwa® (AKF) insofar as the
Wilson term breaks gauge invariance. AFK used an
ungauged Dirac-type Wilson mass, breaking both chiral
and gauge symmetry, the latter of which was restored
with a change of variables to implement the integral over
gauge transformations. This approach was later shown
to be equivalent!® to the proposal of Swift and Smit,'! in
which a radially frozen Higgs field was used to give the
spurious fermion modes a large mass. Unfortunately, the
AFK proposal leads to a quadratically divergent vacuum
polarization!? indicating that a bare mass term must be
included for 4, in the original action. It also contains
L-R fermion couplings.

Despite the resemblance, S.4 differs from the AFK ac-
tion in two very important ways: it does not couple left-
and right-handed fermions, and gauge fields appear in the
Wilson term. The advantage of not including L-R cou-
plings is clear, for it allows one to construct a theory
which is chiral from the beginning, without having to
resort to a limiting process or fine-tuning. In fact, the ac-
tion may be written using a single left-handed Weyl fer-
mion. The virtue of including gauge fields in the Wilson
term is somewhat subtle. A minimum requirement for a
lattice fermion action is that, in the continuum limit, it
agrees with standard continuum perturbation theory.
Examination of perturbation theory with Wilson fer-
mions shows that the gauge-fermion interactions arising
from the Wilson term are crucial. It is exactly because
the AFK action omits gauge fields from the Wilson mass
that the vacuum polarization is quadratically divergent.
While one might argue for the necessity of using co-
varient derivatives as a fundamental principle, the neces-
sity of agreement with continuum perturbation theory
compels us to include gauge fields as well.

The proposed action will now be subjected to three
standard tests for lattice fermions. The free propagator
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will be calculated to verify that it has a single pole at
P, =0, the one-loop vacuum polarization will be com-
pared with Wilson fermions, and the chiral anomaly will
be shown to be the same as for Wilson fermions in the
continuum limit.

PROPAGATORS
The usual free-fermion propagator is given by
(Bptn)= [ DYDI,p,exp(—Seq) , (12)

which is more conveniently evaluated as
(T )= [ DYDG T, [ exp(—Sy—Sc). (13)

Because of S, we must consider (%, ) and (4, ¥7)
propagators as well. All three may be calculated in
momentum space by summing insertions of the S ver-
tices given by

Using C Ty Z = —v, and performing the sum,

Gy,(p)=—a 3 y,sinp,a [ [r S sin’p,a /2 ]2+ 3 sin’p,a
p n p

Similarly, we find, for {¥7y) and ($9P7),
G'pr‘p(p): —arC %‘, sinzp#a /2

Gwr(p)=arCT2sin2p#a/2 { [r S sin’p,a /2 ]2+ S sin’p,a
) p n

All three have the required undoubled pole structure.

The integral over gauge transformations is included by
considering how the individual diagrams of Fig. 1 trans-
form. Since the mass insertions come from expanding
exp(—Sy—S¢) in Eq. (13), they appear under fV and
are subject to gauge transformations. From Eq. (9) we
see that the C- and CT-type vertices transform as
V1(p)V(p) and VT(p)V*T(p), respectively. This means

G\Fu‘p) = —>>— 2 (x—<——~—>——-)

i
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FIG. 1. The undoubled ¥, ¥, and ¥ propagators as inser-
tions of the vertices of Eq. (13) into the doubled propagator.

r 3 sin’p,a/2 ]2—1- S sin’p,a } -1
p n
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—3CW(p)=—1a"'rC 3 sin’p,a/2 ,
m
(14)
%CTW(p)Z%aﬂrCTz sinzp#a /2,
"

into the naive propagator, as shown in Fig. 1. The factor
of 2 on each insertion comes from the two possible orien-
tations. The () propagator is

G (P)=Gy(p) 3 [—W(p)CGT(p)CW (p)Gy(p)T",

(15)

where the transpose refers to the spinor indices. The
transpose simply reflects the order in which the spinor in-
dices are contracted, as indicated by the directions of the
arrows in Fig. 1.

-1, (16)

a7

- (18)

that any diagram containing unequal numbers of C- and
C*-type mass insertions will transform nontrivially and
will be zero under f - This is not to say that G oTy and

G T vanish. The reason is that a diagram may contain

(b) I

MWWN——<—-

FIG. 2. (a) A diagram with a balanced number of C- and C'-
type insertions which survives the integral over gauge transfor-
mations. (b) A diagram with one extra C-type insertion which is
therefore zero under f

v
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FIG. 3. Feynman rules for the proposed fermion action. All
momenta are defined to flow into the vertices.

equal numbers of C- and CT—type insertions, giving a
nonzero contribution to some amplitude. For example,
Fig. 2(a) shows a diagram with canceling vertices. Under
a gauge transformation it will be multiplied by an equal
number of ¥’s and VT’s, giving a singlet which survives
the integral over gauge transformations. On the other
hand, the diagram in Fig. 2(b) contains an extra C-type
insertion, causing it to transform like V, and thus in-
tegrating to 0. The propagators Gsz/; and GWT must be
retained, and the Feynman rules augmented to disregard
diagrams with “‘unbalanced arrows,” such as Fig. 2(b).

VACUUM POLARIZATION

The breaking of gauge invariance in S is a possible
source of problems, and there is good cause for fear that
some irreparable damage has been done to the theory.
As a test, I will compare the QED one-loop vacuum po-
larization Hffv to that of standard Wilson fermion. Rath-

|

Gy \(p)=—a 3 v,sinp,a
u

r 3 sin’p,a /2 ]2+ S sin’p,a
u n
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FIG. 4. One-loop vacuum polarization for the proposed ac-
tion.

er than simply calculating va, a diagram-by-diagram
comparison with Wilson fermions points to the close
similarities present even in perturbation theory. Also,
this way of doing the calculation makes it clear that the
agreement is not a coincidence and may be generalized to
higher orders.

The Majorana-type interaction vertices are given in
Fig. 3. They are derived in the usual manner by expand-
ing

Un,u‘—“z(igaA,,,u)m/m! . (19)

m

Note that the Feynman rules do not include the gauge in-
tegration which is performed on amplitudes.

Using these vertices and the propagators in Egs.
(16)—(18), the vacuum polarization Hﬁv is given by the
sum shown in Fig. 4. The symmetry factors include a
factor of 2 for the two possible ways of orientating the in-
going (outgoing) arrows on the c-(«c) type vertices.

For comparison, the Dirac-type interaction vertices are
given in Fig. 5. These are slightly different than usual®
because the pieces of the vertices coming from S, and
Sy have been separated, the latter being denoted by a cir-
cle on the vertex. The fermion propagator is also split
into two pieces:

-t (20)

- 21

Gu.p)=ra Esinzpua/Z [ [r S sinzp#a/Z ]2+ zsinzp#a
# 7 #

with Gy, indicated by a circle on the line. Splitting up the Feynman rules in this manner makes it possible to compare
with H;fv diagram by diagram.

Using these fractured Feynman rules, Fig. 6 shows II::,, in which those diagrams with an odd number of y matrices
have been omitted. Although the integrals are superficially quadratically divergent, a cancellation causes HK,/, to be only
logarithmically divergent.
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The integrals contained in H

—a 3 yILsinpa

, are easily shown to be the same as those in H

. As an example, Fig. 4(f) is given by
—a Y y,sinp,a
g

d* .
zjf aﬁztr(rgy#smp#a)

d*p + .
tr(—1C'rgy sinp ,a)
f (2m)* 2 T8V WPy rZsinzpoa/z]z-i- [2‘,sin2paa}2
o o
f
where, once again, use has been made of C)/#TCT= ~Vw

and the trace is over ¥ matrices. Multiplying Eq. (22) by
the symmetry factor of 4, we find exactly the same in-
tegral as Fig. 4(d) for the Dirac case. Continuing in this
manner, Figs. (4) and (6) give identical results.

In evaluating the diagrams in Fig. 4, one must be very
careful to observe how the spinor indices are contracted.
The presence of 7/(7,' in Eq. (22) reflects the ordering of spi-
nor indices, just as in Eq. (15). Similarly, there must be a
consistent convention for the contraction of indices on
the interaction vertices. The spinor indices on (y ),z are
associated with a particular orientation of the arrows on
the vertex. Therefore, if the product of propagators and
vertices around the loop encounters a vertex with back-
wards arrows, that vertex must use y Z

Note that, if gauge fields had been omitted from S di-
agrams, (c)-(g), (i), and (j) would not appear in Fig. 4, and
¢, would have differed from HW It is also very in-

#V . .
teresting that the integral over gauge transformations is

k ki k.
p q p Zﬁé q
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Gwi(p) Gwa(p)

FIG. 5. Feynman rules for standard Wilson fermions, but
with interactions from the naive action separated out for com-
parison with Fig. 3. Vertices with circles are those from S.
All momenta are defined to flow into the vertices.
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[r S sin’pa /2 ]2+ [2 sin’pa
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a y,sinp,a
o

r S sin’p,a/2 ]2—}- IZ sin’p,a ]2 ’

g o

(22)

not required to ensure a logarithmically divergent vacu-
um polarization. The violation of gauge symmetry con-
tained in S is surely the most benign imaginable. In-
clusion of the gauge integral leaves Hﬁv unchanged. In
fact, we can easily see that fermion loops will, in general,
survive the mtegral A fermion loop contains equal num-
bers of C- and C' -type interactions, even if some of them
come from propagators. Since there are then equal num-
bers of interactions transforming as V'(p)V(p) and
VT(p)V*T(p), the loop will contain a singlet and remain
nonzero under [ .

The diagram-by-diagram comparison reveals how simi-
lar perturbation theory for S.4 is to that for Wilson fer-
mions. The two sets of interaction vertices are, of course,
not very different. The Majorana-type vertices have C’s
and C™’s but, as was pointed out above, a loop must have
equal numbers of the two vertex types. The charge-
conjugation matrices then either cancel from CC'=1, or
transpose a ¥y matrix on a propagator. In either case,
what remains is the same integral as a Wilson fermion di-
agram. The normalization is taken care of by the extra
factor of 4 in Eq. (8) which cancels the symmetry factor
coming from the two possible ways of inserting the
Majorana-type vertices.

H:LNV = ‘/\/W‘QWM + '\N\N\Q\N\AN
(@ (®)
4 WN@J\/\M + WWQMM
© (d)
WW( %‘WW + ( 2 + ( z
O]
&) (2)

FIG. 6. One-loop vacuum polarization for standard Wilson
fermions.
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CHIRAL ANOMALY

An important test of any lattice fermion is the chiral
anomaly, which has been investigated for several pro-
posed fermions.!* Instead of calculating the triangle
graph, the chiral transformation properties of the path
integral will be examined. Because of the similarity to
Wilson fermions, the calculation is nearly identical to
that found in Ref. 8. I will show that, in the continuum
limit, the proposed action produces the same anomaly as
does the Wilson action. This is sufficient since Wilson
fermions are known to give the correct chiral anomaly.

Because S connects 3 with 1, it should be written us-
ing a single matrix acting on both 1 and 1. Defining

1|0 iD
=% |—ipT o |’
(23)
1 |CW O
R=71o —cw|’

the action may be written as
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where B, W, and W are shorthand for Egs. (1) and (8).
Because Q and R should reflect only the transformation
properties of the action, i is defined to be gauge invari-
ant while W and W transform as

Il

Sy+Sc

W on — VZ Ve Won
— — (25)
W — W VIVIT.

Under an infinitesimal chiral transformation, the path in-
tegral transforms as

szthZexp( —S.q)
(26)

Performing the Grassmann integration and then using
the properties of determinants, Eq. (26) becomes

4

oY
_SN—SC—IZa ¢

¥

~ [DuDE[ 0

deet(Q +R +i2aysR)\?= deet(Q +R)2det[1+i2a(Q +R) 'ysR ]2

= deet(Q +R)2exp{Trin[1+i2a(Q +R) ™ 'ysR 1'%}

szdet(Q +R)exp{Trlia(Q +R)"'ysR 1} ,

(27

where the last line used the fact that « is infinitesimal, and the trace is over all lattice, spinor, and gauge indices. Equa-
tion (27) shows that, under the chiral transformation, the path integral acquires an extra phase, the anomaly factor.
Substituting for R and Q and expanding, we find the phase to be

A=exp{Tr[ia(Q +R)"'ysR 1}
=exp{Tr[iays(Q*+R2+QR +RQ)"(Q +R)R]}

=exp |Tr |iays(G —GVG +GVGVG+. ..) |4QR —
where

éaw[Dﬂ,Dv] iCWD —iDCTW

V= o
iDCW —iC'Wp 50wl DD, ]

- (29)

D*—w? 0

G=lo pr—w?

Multiplying the matrices and tracing over the two-
dimensional subspace gives nearly the same expression
obtained for Wilson fermions. The only difference is that
W and W transform under Eq. (25). Therefore, we may
take advantage of the calculation already done for Wilson

w2 0

0 W2 (28)

il

fermions.®

In the continuum limit only the GFVGVG term contrib-
utes, and terms containing [ W, D] vanish as well.® This
leaves

A =exp[—iaTrys(g2g3gW?+g3g=gW?)], (30)
where
g=(D*—w?»™!, g=(D*—Ww?*!,
; (31)
2=*2-U”V[D#,DV] .

Terms coming from 4QR in Eq. (28) have been deleted
since they contain an odd number of Y,’s and are zero
under the trace over spinor indices. Finally, in the con-
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tinuum limit, the contributions from gauge fields in
(D*—w?)"! and (D?—W?)"! vanish.® This means that
the factors arising from the gauge transformation in Eq.
(25) do not contribute either, and we may use the
ungauged, nontransforming versions of (D2— W?)~! and
(D*—W?*)"!. This gives the same expression as for Wil-
son fermions, which is then evaluated exactly as in Ref. 8,
yielding the correct anomaly factor in the continuum lim-
1t.
GAUGE TRANSFORMATIONS

It is encouraging that both the vacuum polarization
and the chiral anomaly did not rely on the integration
over gauge transformations. To see what effect S, does
have on the gauge symmetry, we should extend the
theory beyond fermions in a gauge background and con-
sider the full path integral with gauge fields. This will
shed some light on how gauge-violating interactions may
be introduced.

The complete path integral is given by

z=foDUfD¢DzZexp(—SG —Sy—Sc), (32)

where S, is the gauge action and f y has been pulled
outside since the measures are gauge invariant. As it
stands, Eq. (32) contains two integrals over gauge trans-
formations, the second one comiming from f DU.

Although gauge fixing is not required on the lattice, in-
variant Green’s functions will be the same if the path in-
tegral is restricted to inequivalent configurations. There-
fore, we may consider the gauge fixed

ZGF=fo’DUexp(*SG)
X [ DI DYexp(—Sy—Sc) , (33)

where the prime denotes integration over gauge-
inequivalent configurations only. A trivial rearrangement
of Eq. (33) gives

ZGF=fDUexp(—SG)fDIIJDlPeXp("SN‘SC) ,  (34)

which is what one would have obtained by blindly adding
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S¢ to the naive action.

Equation (34) has the disturbing appearance that a
gauge-violating interaction has been simply added to an
otherwise well-behaved theory. In fact, the gauge-
violating terms coming from S, provide a gauge-fixing
function rather than destroying the symmetry outright.
To see this more explicitly let

det(Q +R)V*=F,+F, , (35)

where F; and F), are gauge invariant and variant, respec-
tively. Integrating out the fermions, Eq. (34) becomes

Z = [ DU exp(—Sg)F,(1+Fy /F;), (36)

and we see that a gauge-fixing function'*(1+F}, /F;) has
appeared. Naive introduction of S provides the neces-
sary undoubling, while its potential to break gauge sym-
metry is instead realized as a nonlocal gauge-fixing condi-
tion. Of course, one is not compelled to compute in this
strange gauge if one is willing to do the extra integral
over gauge transformations. However, by calculating in
a nonlocal gauge, invariant quantities may be calculated
with the single integral over all U’s.

It appears that the integral over gauge transformations
prevents the breakdown of gauge symmetry we would ex-
pect from naive introduction of S¢. This is made possible
by the compactness of the group integration, which al-
lows the lattice theory to be formulated without gauge
fixing. This is not to say that gauge-violating interactions
may be added at will, since such interactions do contrib-
ute to gauge-invariant quantities. The final test is to see
that the desired theory is recovered in the continuum lim-
it. For the proposed action this is the case, and a single
chiral fermion is obtained.
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